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Abstract. We repon spin-wave results for the sublattice magnetization (to order O(l/S2)) and 
two spin stiffncsses and susceptibilities (to order O(l/S)) for the two-dimensional triangular 
Heisenberg antiferromagnet. These stiffnesses and susceptibilities are used as input parameters 
in scaling functions for various observables. The scaling results for uniform swptibility are 
compared with recent numerical data. 

Department of Physics. PO Box 208120. Yale University, New Haven, CT 06520-8120, 

1. Introduction 

In recent years, there has been significant interest in the theory of the low-temperature 
properties of frustrated quantum antiferromagnets in two dimensions (20). Among these 
systems, antiferromagnets on a triangular lattice are perhaps the most popular objects, as 
there are several experimental realizations such as VClz, VBr2, CsEu, Nan02 etc [l]. 
Theoretical studies of such antiferromagnets go back to 1974 when Fasekas and Anderson 
[2] first suggested that for spin S = $, quantum fluctuations may be strong enough to 
destroy the classical 120" ordering of Heisenberg spins. Since then, there have been a 
number of numerical studies of the S = 1/2 antiferromagnet: some of them [3] do indicate 
the presence of well defined long-range order reduced by quantum fluctuations by nearly the 
same amount as predicted by non-interacting spin-wave theory [4], while others indicate a 
substantially smaller (if any) ordered moment [5,6].  The latter, if true, would indicate that 
triangular antiferromagnets are very close to a quantum disordering transition. Recently, we 
considered [7] the low-temperature theory of frustrated antiferromagnets. similar in spirit 
to the low-T theory of collinear antifemomagnets [8]. We described the general features of 
such a theory, and assuming the existence of deconfined spinons in the quantum disordered 
phase, derived a number of experimentally testable results for the uniform susceptibility, 
correlation length, dynamical structure factor, spin-lattice relaxation rates etc. We found that 
the behaviour of observables near the quantum transition is universal and depends only on 
a few input parameters at T = 0. The triangular antiferromagnet is likely to be located on 
the ordered side of the transition in which case input parameters are on-site magnetization 
(NO),  two spin stiffnesses, p l  and pli, and two susceptibilities, XI and x ~ l .  The fact that 
one needs two stiffnesses is indeed a direct consequence of the well known fact that the 
macroscopic order parameter in triangular (and any other frustrated) antiferromagnets is 
given by a pair of mutually orthogonal unit vectors, nl and nz, which specify a plane. The 
two stiffnesses then measure the energy cost of twists in the plane ( ~ 1 1 )  and perpendicular to 
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the plane of the order parameter ( p l ) .  Two uniform susceptibilities, xll and X I ,  on the other 
hand, define the response of the antiferromagnet with infinitesimal anisotropy to uniform 
magnetic fields perpendicular and parallel to the plane of the order parameter, respectively. 
Note the inversion in the order of ‘parallel’ and ‘perpendicular’-the susceptibility tensor 
xu,o is defined with respect to a unit vector m = nl x ?IQ perpendicular to the plane of 
spin ordering [9,10]: 

A V Chubukov et al 

xu. p = xl&p + (XII - xdmamp. (1.1) 

The two stiffnesses and susceptibilities are indeed related by spin-wave velocities 

The goal of the present paper is to calculate the five input par,ameters for triangular 
antiferromagnets in the expansion over the inverse spin S. This will allow us to make 
quantitative predictions in the deconfined spinon scenario on the behaviour of observables, 
and to compare scaling results with recent high-temperature series expansion studies of 
hiangular antiferromagnets. We will also compare our result for sublattice magnetization, 
NO, with recent series expansion 161 and other studies. 

Although throughout the paper we will use a large-S approach, our chief interest is in 
the case of S = 112 for which numerical studies have been performed. Indeed, for small S, 
the expansion parameter for spin-wave calculations is not small. However, as we wilI see 
below, the convergence of the perturbative series in 112s in hiangular antiferromagnets is 
very good (as it is on the square lattice [11,12]), and the 1/S expansion is likely to give 
quite accurate values of observables, even for S = 112. 

c: = PI/XI9 c; = PIdXII. 

2. 1/S expansion 

2.1. Bose Handtonian 

We now turn to a description of the calculations. 
interactions between nearest neighbours: 

We consider here the model with 

The procedure of doing the 1/S expansion is rather standard and involves several steps 
which include (i) the transformation from spin operators to bosons via Holstein-Primakoff, 
Dyson-Maleev, or some other transformation, (ii) the diagonalization of the quadratic form 
in bosons, and (iii) the use of a standard perturbative technique for Bose liquids to treat 
the interaction between spin waves. Non-interacting spin waves have energy which scales 
as S, while the interaction vertex involving m bosons scales as S2-m’2; this gives rise to 
an expansion in powers of 1/S for anharmonic contributions, similar to that in a weakly 
interacting Bose gas. 

Another important issue, related to the I j S  expansion, is the number of Bose fields 
which one has to introduce in order to keep imck of the whole spin-wave spectrum, 
not just the low-energy modes. This is important because quantum fluctuations are not 
divergent in ZD, and the 1/S expansion involves snms over the whole Brillouin zone. In the 
general case, the number of different Bose fields is equivalent to the number of magnetic 
sublattices. However, in several special cases, a multisublattice magnetic configuration can 
be transformed into a onesublattice ferromagnetic one by applying a uniform twist on the 
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coordinate frame. In this situation, the spin-wave spectrum has no gaps at the boundaries of 
the reduced Brillouin zone and one can describe all excitations by a single bosonic field, as 
in the case of a ferromagnet. Obviously, the triangular antiferromagnet in a zero magnetic 
field is an example of such special behaviour: the 120" ordering becomes a ferromagnetic 
one in the twisted coordinate frame with a pitch Q = (4n/3,4n/d). We will therefore use 
a onesublattice description of triangular antiferromagnet whenever possible. This indeed 
substantially simplifies the calculations. 

We start with the transformation from spin operators to bosons. The choice of the 
transformation is indeed only a matter of convenience, and the final results are independent 
of the way in which bosons are introduced. Nevertheless, there are several possibilities 
extensively discussed in the literature [13]. We found it most convenient to use here 
the conventional Holstein-F'rimakoff transformation because it preserves the Hermitian 
properties of the Hamiltonian. We therefore. use 

S, = s -uta S+ = JZCX a S- = utJzs-;;i;;. (2.2) 

Substituting this transformation into (2.1), expanding the radical, and restricting to only 
cubic and quartic anharmonic terms, we obtain after some algebra 

'H = "rio f 3Js('Hz 3. 'Ha -1- "ri4) (2.3) 

where ?to = - 9  J P N  is the classical ground state energy, and other terms are 

(2.4) 

Here i kj, and 

!Jk = - sm - cos - - cos Y ") . (2.5) - 2 .  k x (  k, 
2 3 2  2 2 

Finally, Ak and Bk E given by 

(2.6) 

At S = 00, anharmonic terms are absent and 'Hz can be diagonalized by a standard 
Bogolubov transformation 

3 
2 

Bk = --&. Vk & = I + -  
2 

(2.7) t ak = k(ck + xkc-k) 
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with 
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and 

E& = (A: - @)I/’ = ((I - V&)(1 + 24))”’. 

The diagonalization yields 

(2. IO) 

It follows from equation (2.9) that the excitation spectrum of the ideal gas of magnons 
has three zero modes, as indeed it should. Two of these modes are at k = iQ where 
Q = (4n/3,4.r/& is the ordering momentum in a triangular antiferromagnet, and the 
third is at k = 0 and describes soft fluctuations of total magnetization. The expansion near 
zero modes gives two spin-wave velocities 

(2.1 1) 

(2.12) 

The ratio of the two at S = cc is q/cL = &. This waS also obtained in other 
approaches [lo]. 

The infinite4 spin-wave results can be also used to get the fust quantum comection to 
on-site magnetization [4]. Indeed, (uta) in (2.2) is nothing but the density of particles which 
is finite due to the anomalous term in the quadratic form. From (2.7) and (2.8), we have 
( a l u ~ )  = (Ak - & ) / 2 4 ,  and therefore non-interacting spin waves reduce the sublattice 
magnetization to 

0.522 
(2.13) 

We next consider corrections to equations (2.11) and (2.13) due to the interactions 
between spin waves. We will follow the same line of reasoning as for square-lattice 
antiferromagnets. However, the presence of cubic terms makes the analysis considerably 
more involved. 

We start with the spin-wave velocity renormalization. 
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2.2. Spin-wave velocity 

Our goal is to obtain the leading 1/S renormalization of spin-wave excitations. For this we 
consider first-order self-energy corrections due to quartic anharmonicities and second-order 
corrections due to cubic anharmonicities (recall that cubic terms have the overall factor SI''). 
The corrections due to quartic terms are easy to compute, because of leading order in 1/S, 
one can get away with simple one-loop diagrams. Equivalently, one can simply decouple 
the fourfold term in equation (2.4) by making possible pair averaging. The quadratic form 
allows for non-zero normal (u$zk) and anomalous (uku-k) pair products of Bose particles, 
and the decoupling changes At and Bk to 

(2.15) 

A simple inspection then shows that the renormalized spectrum ( E k  = (x: - 
keeps a zero mode at k = 0, but acquires a finite gap at k = iQ: 

still 

(2.16) 

This finite gap is indeed an artifact of using only quartic terms, and cubic anharmonicities 
should restore the correct structure of the spectrum, as we demonstrate below. 

There are several ways to deal with the cubic terms: one can either calculate the 
effective fouifold vertex produced by two triple vertices [ 14,151, and then use the decoupling 
procedure, or one can transform to quasiparticles (i.e., diagonalize the quadratic form) 
considering first only quartic corrections, and then calculate the renormalization of the 
excitation spechum due to cubic terms in the second-order perturbation theory. Below we 
use the second approach which is technically advantageous. We therefore first transform 
from particle operators (ak) to quasiparticles (Ck) using equation (2.7), but with A k  and B k  
instead of An and Bk. The bare Hamiltonian then keeps the form of equation (2.10) with 
& instead of Ek. On the other hand, the structure of cubic vertices becomes more involved 
after the transformation to quasiparticles, and instead of equation (2.4) we obtain 

The vertex functions @ I  and @2 are given by 
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and 
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f“’ * - - (  Xi f &)I/’. (2.19) 

The self-energy diagrams to order 1/S are shown in figure 1. We see that cubic terms give 
rise to both normal and anomalous self-energy parts so that the dispersion relation again 
has the form typical for a 2 x 2 problem: 

(0 + L ( k 9  0))’ = ( E k  i- X d k ,  0))’ - (X+.+(k, 0))’ (2.20) 

where C,,a(k, o) = (Z+, - (k ,  o) f X+.-(-k, -a). However, it is not difficult to check 
that C-,- - E+.+ - 1/S and therefore anomalous self-energy terms contribute to the 
excitation energy only to order l/S2, while to order 1/S a solution of equation (2.20) is 
simply 0 = Ek where 

l?: = 8: 4- 2&X+,-(k, E k ) .  (2.21) 

We therefore need to evaluate here only the normal component of the self-energy. The 
analytical expression for E+.- is 

To leading order in 1/S we can indeed use non-renormalized values for Ax, Bk, E k  in the 
RHS of (2.22). 

z + + = ~ ~  
Figure 1. Secondader self-energy corrections to magnon propagators due to cubic vertices. 
Notice tM cubic terms always produce anomalous selfenergy terms. 

We first demonstrate that & has a true zero mode at k = Q. For this we need to evaluate 
Z+,-(Q, E Q ) .  We found the following equality to be quite useful in the calculation 

J?; %tQlz = (Aq+plz + BqiQf2) - (AqrQ/z - BqTQfZ). (2.23) 

Substituting (2.23) into the expressions for the vertex functions and using AQ = BQ = $, 
we obtain after simple algebra 
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Substituting, then, the vertex functions into the formula for the self-energy we obtain using 
(2.19) 

(2.25) 

Finally, upon substituting this result into equation (2.21) and using (2.16) for &, we find 
that the gap in the excitation spectrum disappears as it should. 

Our next step is to expand E k  and & near the zero modes, and obtain the corrections 
to the spin-wave velocities to order 1/S. The expansion near k = 0 is quite straightforward 
because &,(1,2; k )  and & 2 ( l r  2, k )  both scale as k at small k,  and one can therefore safely 
neglect Et in the denominators in (2.22). Doing the algebra, we obtain the renormalized 
spin-wave velocity at k % 0 in the form 

where 

2 -  . , k x  k + J5k, +sin2 k x -sky Q,  -sin - +sin2 
2 4 4 

Numerical integration then gives 

= C,I (1 - !?$) (2.27) 

The structure of the expansion near k = +Q is more involved and we refrain from presenting 
the analytical expression for the spin-wave velocity. Numerically, we obtained 

21 = Cl (1 + !g) (2.28) 

Comparing (2.27) and (2.28). we observe that quantum fluctuations tend to diminish the 
difference between the two spin-wave velocities. This is consistent with our 1 / N  result in 
[7] that the relative difference between tl and El, should disappear at the quantum-critical 
point. We will use (2.27) and (2.28) below and now proceed with the calculations of 
sublattice magnetization. 

2.3. Sublattice magnetization 

We have shown above that to leading order in 1/S, the correction to sublattice magnetization 
comes already from non-interacting magnons (equation (2.13)). Here we obtain the next 
term in the expansion in 1/S,   which is also the leading 1/S correction to the density of 
particles. We again have to consider both quartic and cubic terms, since they contribute at 
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the same order to x k ( & ) .  AS before, quartic terms only renormalize the coefficients in 
the quadratic form, and hence change the expression for the density of particles to 

A V Chubukov et a1 

(2.29) 

where i k  and & are given by (2.14) and (2.15). In explicit form 

---E” U2 E””-- 9 
E ,  9 4 . k E k  ’ k  Ex 3 2 s  , E, E9 32s  , 

(2.30) 

We see that the very last term behaves near q = Q as 1q - which makes the integral 
over q divergent. The divergence is indeed an artificial one and should disappear when we 
add the contributions of the cubic terms. 

To see how cubic terms modify (2.29), we express the density of particles in terms of 
the quasiparticle operators using (2.7) and (2.8): 

(2.31) 

The first two terms are just the renormalized spin-wave terms. The third correction is related 
to the anomalous self-energy term in figure 1. Performing the frequency summation in this 
term, we obtain 

where 

(2.32) 

(2.33) 

Finally, the last term in (2.31) contains the density of quasiparticles. This density is 
finite to order 11s because among cubic non-linearities, there is the term which describes 
simu~taneous emission of three spin waves. Evaluating the expectation value of &) by 
the usual means, we obtain 

(2.34) 

where 

(2.35) 
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We first show that the total expression for the density of particles is free from 
divergencies. Simple inspection of equations (2.32)<2.35) shows that the divergent 
contributions from the cubic terms (namely, l/E3 and l/EZ terms in (2.32) and 1/E2 
terms in (2.34) ) come from the region k % Q, where \Y and T tend to constant values. For 
these k ,  we again use (2.23), substitute it into the vertex functions, and after some simple 
algebra obtain 

(2.36) 

Substituting further this expression into (2.32) and comparing the result with the divergent 
piece in (2.30). we find that the l/E3 contributions from cubic and quartic terms, and the 
1/E2 contributions from the two cubic terms cancel each other, so that the 1/S correction 
to the density of particles is finite, as it of course should be. We then performed numerical 
computation of the 1/S terms in (2.31) and obtained 

S - 0.261 + - (2.37) 

For S = 1/2, equation (2.37) yields (S) = 0.266, which is close to half the classical 
value. A very similar result was obtained earlier by Miyake [16], who calculated the on- 
site magnetization to order l/Sz by evaluating numerically the response to a staggered 
magnetic field. His estimate for the l/p correction is however somewhat smaller than ours 
(0.01 instead of 0.027). In any event, l/Sz terms are rather small and can hardly change 
substantially the lowest-order spin-wave result for the magnetization [43. We therefore 
found no support for the recent claim based on series expansion analysis [6] that the value 
of magnetization is substantially lower than the spin-wave prediction. Note, in passing, 
that for a squarelattice antiferromagnet, the first anharmonic correction to ( S )  is exactly 
zero 1171. Indeed, cubic terms are absent from the square-lattice antiferromagnet, and 1/S 
corrections due to quartic terms do not change the shape of the quasiparticle spectrum (that 
is, & / E k  = An/& ). The next-to-leading-order correction in the square-lattice case has 
been calculated and found to be very small 1171. 

2.4. Uniform susceptibilify 

Now we calculate, to order l j S ,  the response of a triangular antiferromagnet to an external 
magnetic field, i.e., transverse and longitudinal susceptibilities. For classical spins, the two 
susceptibilities can easily be obtained by minimizing the ground state energy. This yields 
XI = ,q = 2/91/5Ju2 where U is the interatomic spacing (az-.,%/2 is the unit cell volume). 
As in the bulk of the paper, we define X I  and X I I  without the gyromagnetic ratio gpLg/Ft. We 
see that the two susceptibilities are equal in the classical limit [181. This degeneracy in the 
response to a magnetic field in a ZD hiangular antiferromagnet has attracted some attention 
in the past as an example of the ‘order from disorder’ phenomenon [1&22]. For our present 
purposes, it is sufficient to observe that the degeneracy is a purely classical effect. It is not 
related to the symmetry properties of a quantum system and therefore should be broken by 
quantum fluctuations. 

Technically, the computations in a finite field are more involved because the transverse 
field breaks the 120” ordering in the basal plane. In this case, a transformation to a twisted 
coordinate frame is no longer advantageous because Umklapp processes also contribute to 
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order 1 f S. It is then more convenient to introduce a separate Bose field for each of three 
sublattices. For the longitudinal response, the 120" ordering in the basal plane is preserved 
and a onesublattice description with no Umklapp terms is still valid. However, one has to 
be careful in this case as well, because in the presence of a field, the excitation spectrum is 
no longer an even function of k .  This is consistent with the fact that time reversal symmetry 
in a magnetic field requires that in changing k + -k in the spectrum, one has to change 
simultaneously the sign of H. 

The corrections to the susceptibility tensor to order 11s were computed by Golosov 
and one of us [21]. We refrain from presenting the details of the calculations and list here 
only the results. To order Ifs, they are (notice that the definitions of XI and in [21] are 
interchanged compared to ours): 

where 

(2.38) 

(2.39) 

and 

where f") = f",)  were defined in (2.19). Note that contrary to the situation in a stacked 
3D triangular antiferromagnet where z XI, the transverse (in-plane) susceptibility 
in the 2D case turns out to be larger than the longitudinal one; this gives rise to an 
unconventional phase diagram in a magnetic field which has been discussed several times 
in the literature [18-211. 

2.5. Spin stiffness 

With the values of the two spin-wave velocities and spin susceptibilities at hand, we are 
now in a position to calculate the spin stiffnesses. To order 11.7 they are 

where 

Zf = I - 0.1 I9f2.S Z{ = 1 - 0.679 12.9. (2.42) 
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3. Conclusions 

In this paper, we calculated in the 1,’s expansion the T = 0 parameters of a ZD Heisenberg 
antiferromagnet on a triangular lattice. The two spin stiffnesses and susceptibilities were 
calculated to fist order in 1/S, while sublattice magnetization was calculated up to O(l/S2). 
We found that numerically, the l/Sz correction to the magnetization is rather small even 
for S = 112 so that one may hope that already the first order in the 1/S expansion 
yields quite accurate results for all spin values. We expect the same to be true for 
stiffnesses and susceptibilities. The application of our 1/S results to S = 112 then 
yields XI = 0.09/Ja2, X I ,  = 0.07/Ja2, p~ = O.WJ, = 0.07J. We also found 
NO = 0.266 which is about a half of the classical value. Both the on-site magnetization and 
the spin stiffnesses are smaller than in a square-lattice antiferromagnet, where NO = 0.3 
and ps = 0.18J 1231. However, the difference in magnetization is relatively small, and 
for stiffness it is mostly associated with geometrical factors. We therefore cannot conclude 
from our results that triangular antiferromagnets are much closer to quantum disordering 
transition than squarelattice ones, as has been recently suggested [6]. 

Finally, for comparisons with experimental and numerical results at finite T ,  when long- 
range order is absent, it is convenient to introduce the effective stiffness and susceptibility 
averaged over all three spatial directions: 

2 1 2 1 
3 3 P = -PL + ?PI1 x = ?XL + -xII. 

Application of 1/S results yields 

1 -0.399/2s 
J S  tqsx = - (1 - 0.339129 1/5 91/5Ja2 P =  

(3.1) 

(3.2) 

For S = 112, we then have p = 0.0875, x = 0.085/Ja2. 
In a separate publication [7], we obtained the scaling expressions for various observables 

near the critical point (in the quantum-critical region) with p and x as input parameters. In 
particular, for the uniform susceptibility we obtained 

x.(T)= (3.3) 

where cz = PIX. Substituting the values of x and p into (3.3), we obtain for S = 112 

J 

2 

xu(T) = (2) [o.Wx + 0.14- (3.4) 

The temperature dependence of xu was recently studied in high-temperature series 
expansions 1241. The data show that xu obeys a Curie-Weiss law at high T, passes 
through a maximum at T 0.4J, and then falls. Numerical data are available only over a 
relatively small temperature region below the maximum. Nevertheless, we fitted the data 
by a dependence linear in T ,  as &equation (3.4), and found 0.13 iO.03 for the slope and 
around 0.06 for the intercept-both results are in reasonable agreement with our theoretical 
expression. The comparison with other observables is considered at some length in [7]. 
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